+2.767¹³), it is evident that the dissociation for our series is less sensitive to substituent influences than the dissociation for the anilinium series.¹² This is consistent with the observation¹⁴ that the insertion of a methylene group between the aromatic ring and the reactive center results in a decrease in the ρ value. Based on data from several pairs of series, the average value

TABLE III Apparent Partition Coefficients of Substituted 1-Benzyl-3-(N,N-diethyl.carbamoyl.)pperioine Hydrobromides

^a Standard deviation. ^b $\pi = \log P_{\rm X} - \log P_{\rm H}$, where $P_{\rm X}$ is the partition coefficient of a derivative and $P_{\rm H}$ is that of the parent compound (I).¹⁵

for the ratio ρ_{n-1}/ρ_{n-0} (where *n* is the number of methylene units between the ring and the reactive site) was found to be 0.410. If the ρ value for the dissociation of the substituted anilinium ions is assumed to be a reasonable approximation of that for a series of substituted 1phenyl-3-(N,N-diethylcarbamoyl)piperidine hydrobromides, the ratio of ρ values (1.109/2.767) is equal to 0.401 which agrees well with the literature value.

Apparent partition coefficients (CHCl₃-water) for members of our series are summarized in Table III along with the corresponding calculated π values.¹⁵ It should be noted that the π values for our derivatives decrease in the order CH₃ > Cl > CH₃O > NO₂ (for the *para* series) and CH₃ > CH₃O, Cl > NO₂ (for the *meta* series). These sequences tend to be consistent with Albert's classification of the pertinent substituents (*i.e.*, lipophilic, CH₃, Cl; slightly hydrophilic, CH₃O, NO₂)¹⁶ considered along with the group moments¹⁷ of these same substituents taken as an *approximate* measure of polarity.

Acknowledgments.—We wish to thank Dr. Andrew Lasslo for his interest in this work and for helpful discussions.

(13) E. S. Gould, "Mechanism and Structure in Organic Chemistry," Holt, Rinehart, and Winston, Inc., New York, N. Y., 1959, p 222.

(14) H. H. Jaffé, Chem. Rev., 53, 191 (1953).

Acctylenic Carbamates. II. Reactions of I,1-Diaryl-2-propynyl Carbamates with Acids and Bases

HOBERT D. DHLAND, DONALD R. CASSADY, AND NELSON R. EASTON

The Lilly Research Laboratories, Imbianapolis, Indiana - 46206

Reveived March 18, 1067

It has recently been reported¹ that potent antitumor activity was found for a series of 1,1-diaryl-2-propynyl carbamates against a variety of experimental tumors in nice. Reactions of these compounds under acidic and basic conditions were investigated, and the products thus obtained were tested for antitumor activity to determine if any might be an active metabolite responsible for this activity. The reactions that the diaryl compounds undergo were compared with those reported for the 1,1-dialkyl-2-propynyl carbamates which were not effective as antitumor agents.

Treatment with Acids.--1.1-Diphenyl-2-propynyl carbamate (Ia) was used as a representative of the carbamate series. The carbamate Ia in aqueous ethanol, when treated with H_2SO_4 below 10° , gave the acetylenic ether IVa (Scheme I). It seems reasonable that the carbonium ion II is the intermediate in this reaction. Use of other primary and secondary alcohols as solvents gave the corresponding ethers. When tertiary alcohols were used, these products were not obtained. When Ia was heated at reflux temperature in the presence of H_2SO_4 , the cinnamaldehyde VI was isolated. The formation of V1 from I is related to the Mever-Schuster rearrangement² with VI arising from the intermediate V. Supporting this type of rearrangement is the fact that the acetylenic ether (IV) under identical reaction conditions also gave VL^{*}

When Ia was treated with anhydrous HCl in an inert solvent, the 3,3-dichloro-1-propene (V111a) was isolated.⁴ When anhydrous HBr was used, a product was obtained that was identical with 3,3-dibrono-1,1-diphenyl-1-propene prepared by Tani and Toda^b from 1,1-diphenyl-2-propyn-1-ol and PBr₃. These dihalides, on treatment with water, gave the cimamaldehyde VI.

The product $1X^{e}$ was isolated from the reaction mixture of 1a and concentrated HCl. This material could be formed from the dimerization of the proposed intermediate V11.

Cyclization involving addition of the earbonyl oxygen to the triple bond occurred to give XI⁷ when 1,1-dialkyl-

(7) D. R. Cassady and N. R. Easton, J. Org. Chem., 29, 2032 (19054).

 ⁽¹⁵⁾ T. Fujita, J. Iwasa, and C. Hansch, J. Am. Chem. Soc., 86, 5175 (1964).
 (19) A. Albert, "Scheduler Taricius," and ad. Laber Willow and Some In-

⁽¹⁶⁾ A. Albert, "Selective Toxicity," 3rd ed, John Wiley and Sons, Inc. New York, N. Y., 1965, pp 348-349.

⁽¹⁷⁾ The group moments are CH₅, 0.4; CH₅O, 1.25; Cl, 1.58; NO₅, 3.98; C. P. Smyth, "Dielectric Behavior and Structure," McGraw-Ilill Book Co., Inc., New York, N. Y., 1955, p 253.

⁽¹⁾ R. D. Dillard, G. Poore, D. R. Cassady, and N. R. Easton, J. Med. Chem., 10, 40 (1967).

⁽²⁾ K. H. Meyer and K. Schnster, Ber., 55, 819 (1922); H. Rupe and E. Kambli, Helv. Chim. Acta, 9, 672 (1926).

^{(3) (}a) G. F. Hennion and B. R. Fleck, J. Am. Chem. Soc., 77, 3253 (1955).
(b) Hennion and Fleck found that 1,1-diaryl-2-propyn-1-ols, when treated under similar reaction conditions, gave IV and VI.

⁽⁴⁾ It was reported by N. R. Easton, D. R. Cassady, and R. D. Dillard, J. Org. Chem., **27**, 2746 (1962), that treatment of 1,1-diphenyl-2-propyn-1-of with dry HCl gave 1,3-diphenyl-3,3-diphenyl-1,propene. This product was identical with the one obtained on treating Ia with HCl. The ultraviolet spectra of these materials suggest that the correct structure for both products should be VIII; $\lambda_{\rm max}^{\rm MeCN}$ 259 mµ (ϵ 15,150). In 95% EtOH, the material decomposed.

⁽⁵⁾ H. Tani and F. Toda, Chem. Ind. (Loudon), 1083 (1963).

^{(6) (}a) P. D. Landor and S. R. Landor, J. Chem. Soc., 2707 (1963). (1) Landor and Landor obtained IX on treating 1,1-diphenyl-2-propyn-1-ol with thionyl chloride in pyridine.

2-propynyl carbamates are treated with HCl (Scheme II). The 1,1-diaryl compounds did not undergo this type of cyclization with acids, but the initial step with all acids used involved the cleavage of the C–O bond that gave rise to the proposed carbonium ion intermediates.

Treatment with Bases.—An intramolecular cyclization of 1,1-diphenyl-2-propynyl N-methylcarbamate (Ib) was accomplished using sodium ethoxide in ethanol to give XII (Scheme III). This type of cyclization has been previously reported⁷ for 1,1-dialkyl-2-propynyl carbamates. When the primary carbamate was used, the acetylenic alcohol (XIII) was obtained. Aqueous hydrolysis also gave XIII. When Ia was treated with Na or NaH in an inert solvent, XIII and sodium cyanate were isolated. The dialkyl compounds also undergo this reaction.

All of the acid- and base-catalyzed reaction products were tested for antitumor activity¹ and were found to be inactive.

Experimental Section

All melting points are uncorrected and were obtained in an open capillary tube. The infrared spectra were determined in $CHCl_3$ with a Perkin-Elmer spectrophotometer, Model 21. The nmr spectra were determined in $CDCl_3$ on a Varian A-60 nmr spectrometer using tetramethylsilane as an internal standard. Data are given in cycles per second.

3,3-Diphenyl-3-ethoxy-1-propyne (IVa).—A solution of 25 ml of concentrated H₂SO₄, 50 ml of water, and 100 ml of ethanol was added dropwise to 12.55 g (0.05 mole) of Ia in 250 ml of ethanol while maintaining a temperature of 0° with external cooling. Stirring and cooling were maintained for 3 hr and the reaction mixture was diluted with water and extracted with ether. The ether was washed three times with H₂O, dried (Mg-SO₄), and distilled. The fraction boiling at 87–88° (0.06 mm) weighed 9 g (76%); nmr, 74 (3 H, triplet J = 7 cps, ethyl), 167 (1 H, singlet, C=CH), 212 (quartet, J = 7 cps, ethyl), 438 cps (10 H, multiplet, phenyl). The infrared spectrum showed the characteristic acetylenic C-H peak at 3.02 μ .

Anal. Calcd for $C_{17}H_{16}O$: C, 86.40; H, 6.83. Found: C, 86.26; H, 7.11.

3,3-Diphenyl-3-isopropoxy-1-propyne (IVb).—In a similar manner using 2-propanol as solvent, Ia was converted to IVb, bp $95-96^{\circ}$ (0.01 mm), 60% yield.

Anal. Caled for C₁₈H₁₈O: C, 86.36; H, 7.25. Found: C, 86.52; H, 7.21.

3,3-Diphenyl-3-methoxy-1-propyne (IVc).—Compound Ic in methanol was converted to IVc, bp 86-88° (0.05 mm), yield 71%. Anal. Calcd for $C_{16}H_{14}O$: C, 86.45; H, 6.35. Found: C, 86.55; H, 6.54.

 $\beta_{*}\beta_{*}$ -Diphenylacrolein (VI). A.—Concentrated H₂SO₄ (25 ml) in 50 ml of H₂O was added dropwise to 12.5 g (0.05 mole) of Ia in 250 ml of ethanol; the resulting solution was heated at reflux temperature for 2 hr. After cooling, the mixture was diluted with H₂O and extracted with ether. After washing with H₂O and drying, the ether was distilled. The fraction boiling at 114-115° (0.08 mm), 8.5 g (79%), solidified; nmr, 395 (1 H, doublet, J = 8 cps, ethylenic), 440 (10 H, multiplet, phenyl), 570 cps (1 H, doublet, J = 8 cps, aldehyde). The infrared spectrum of this material was identical with that reported by Hennion and Fleck.^{3a}

Anal. Calcd for $C_{16}H_{12}O$: C, 86.51; H, 5.81. Found: C, 86.27; H, 5.90.

B.—A solution of Ia (0.05 mole) in *t*-amyl alcohol was treated with H₂SO₄ as described for IVa and the product, 5 g, bp 110-120° (0.05 mm), was identified as a mixture of 1,1-diphenyl-2propyn-1-ol (40%) and $\beta_{\beta}\beta$ -diphenylacrolein (60%).

C.—An ethanolic solution of 8 g of IVa, treated with H_2SO_4 as described under method A, gave 6.3 g of VI.

3,3-Dichloro-1,1-diphenyl-1-propene (VIIIa).—Anhydrous HCl was bubbled into 250 ml of toluene containing 10 g (0.04 mole) of Ia for 30 min. The cooled mixture was filtered. The filtrate was distilled to give 8 g (76%) of colorless oil: bp 108° (0.06 mm); nmr, 368 (1 H, doublet, J = 10 cps), 386 (1 H, doublet, J = 10 cps), 438 cps (10 H, multiplet).

Anal. Calcd for $C_{15}H_{12}Cl_2$: C, 68.46; H, 4.60; Cl, 26.95. Found: C, 68.64; H, 4.79; Cl, 26.68.

Using anhydrous HBr, 0.1 mole of Ia was converted to 24 g (68%) of XIIIb, mp 81-82.5° (lit.⁴ mp 82°), after recrystallizing from petroleum ether (bp 60-71°).

1,2-Dichloro-3,4-bis(diphenylmethylene)cyclobutane (IX).—A mixture of 10 g (0.04 mole) of Ia and 100 ml of concentrated HCl was heated on a steam bath for 0.5 hr and left at room

temperature overnight. The product was extracted from the reaction mixture with CH_2Cl_2 ; yield 45% mp $191-192^\circ$ after two recrystallizations from aqueous aertone (lit.⁸⁶ mp $191-192^\circ$).

5,5-Diphenyl-3-methyl-4-methyleneoxazolidone (XII), -1, 1-Diphenyl-2-propynyl N-methylcarbamate (10 g, 0.04 mole) and 0.22 mole of NaOEt in 150 ml of ethapol were refluxed for 2 hr. After cooling, the reaction mixture was diluted with 11_{2} () and extracted with other. After drying (MgSO₄), the other was distilled. A fraction, bp 148–158° (0.05 mm), was recrystallized from petroleum other (bp 60–71°) giving 7.7 g (66°.) of white solid: mp 92–94°; mm, 481 G H, singlet, NCH₃), 250 (1 H, doublet, J = 3 cps), 269 (1 H, doublet, J = 3 cps), 441 cps (10 H, multiplet).

.1nal. Caled for C₁₇H₁₄NO₂: N, 5.28. Found: N, 5.13.

Treatment of Ia with NaOH in Aqueous Ethanol.---An ethanolic solution of 5 g (0.02 mole) of Ia and 20 ml of 20^{+}_{-0} NaOH was refluxed 3.5 hr. After diluting with H₂O, the mixture was extracted with ether, and the ether was dried and distilled. The product, bp 117-118° (0.3 mm), 2.7 g (68%), was identical with an authentic sample of 1,1-diphenyl-2-propyo-1-ol (infrared, unr).

Treatment of Ia with Sodium Methoxide in Ethanol.—An ethanolic solution of 0.04 mole of Ia and 0.02 mole of NaOEt was stirred 16 hr at 20°. After isolation as described abuve, 7 g of distillate, identified as 1.1-dipheuyl-2-propyn-1-ol, was obtained.

Reaction of Ia with Sodium.—A xylene dispersion of Na (1.4 g, 0.06 mole) and 5 g (0.02 mole) of Ia were stirred at 25° for 16 hr. The excess Na was decomposed with ethanol (25 ml), and Π_2O was added. The organic layer was separated and dried, and the solvent was removed at reduced pressure. An oily residue (4 g) remained (infrared and nmr spectra identical with those of 1,1-diphenyl-2-propyn-1-ol). Water was removed from the aqueous layer; the residue was a mixture of NaOII and NaCNO (strong band at 4.5 μ in the infrared spectrum).

Acknowledgment.—The microanalyses were performed by Messrs. William Brown, Howard Hunter, Charles Ashbrook, and David Cline. Many of the intermediates were prepared by Mr. Lawrence White.

Some 2,3,6,8-Tetrasubstituted Quinazolone Hydrazídes as Monoamine Oxidase Inhibitors^{1#}

SURENDRA S. PARMAR¹⁶ AND R. C. ARORA¹⁶

Department of Pharmacology and Therapeutics, King George's Medical College, Lucknow University, Lucknow, India, and Biochemical Research Laboratory, Boston University, Veterans Administration Hospital, Brockton, Massachusetts 02401

Received June 21, 1967

Inhibitors of monoamine oxidase (MAO) have been shown to possess pronounced anticonvulsant propcrties.² The effectiveness of 2-methyl-3-(4-benzhydrazide)-4-quinazolone in inhibiting this enzyme was found to be significantly increased by the introduction of a substituent at position 6 of the quinazolone nucleus.³ For that reason, corresponding 2-methyl-3-

(2) J. P. Darwin, A. Shore, and B. B. Broslie, Ann. N. Y. Acad. Sci., 80, 643 (1959).

(3) S. S. Parmar and R. C. Arora, Can. J. Chem., 44, 2100 (1966).

(4-benzhydrazide)-4-quinazolones with substituents at positions 6 and 8 have now been synthesized as potential hypnotics and anticonvulsants.^{4,5} In the present study, attempts have also been made to investigate the role of such substituents on the ability of quinazolone hydrazides to inhibit rat liver MAO. The quinazolone hydrazides have been synthesized according to Scheme I (X or X' = H, Cl, Br, or I).

SCHEME 1

Experimental Section⁶

Anthranilic Acids (I).---Substituted anthranilic acids were synthesized according to the methods reported in the literature. The anthranilic acids used were 3,5-dichloro-,7 3,5-dibromo-,⁸ and 3,5-diiodoanthranilic acids.⁹

Acetanthranils (II).—Appropriate anthranilic acids (1 mole) were refluxed with Ac₂O (2 moles) for 1 hr. After excess Ac₂O was distilled, the acetanthranils separated as solid masses and were used without further purification. 3,5-Dibromoacetanthranil had been reported earlier.¹⁰ 3,5-Dichloroacetanthranil, mp 145-146°, and 3,5-diiodoacetanthranil, mp 185-187°, were obtained in S0 and 70% yields, respectively.

obtained in S0 and 70% yields, respectively. Anal. Caled for C₈H₃Cl₂NO₂: C, 46.9; H, 2.2; N, 6.1. Found: C, 46.7; H, 2.0; N, 5.9.

Anal. Calcd for $C_9H_4f_2NO_2$: C, 26.2; H, 1.2; N, 3.4. Found: C, 25.9; H, 1.5; N, 3.2.

(6) Melting points were taken in open capillary tubes and are corrected.
(7) M. M. Endicott, B. B. Alden, and M. L. Sherill, J. Am. Chem. Soc., 68, 1303 (1946).

- (8) A. S. Wheeler and W. M. Oats, *ibid.*, **32**, 770 (1910).
- (9) C. J. Klemme and J. H. Hunter, J. Org. Chem., 5, 227 (1940).

(10) J. S. Shukla, H. H. Singh, and S. S. Parmar, Can. J. Chem., in press.

^{(1) (}a) The authors wish to express their thanks to Dr. Sabit Gabay and Dr. J. P. Barthwal for their advice and encouragement and to Dr. M. L. Dhar and Dr. Nitya Anand from Central Drug Research Institute, Lucknow, for providing facilities for microanalysis. Grateful acknowledgment is made to the Conneil of Scientific and Industrial Research, New Delhi, for providing financial assistance. (b) Vigiting Scientist, Biochemical Reseach Laboratory, Boston University, Veterans Administration Hospital, Brockton, Mass. (May-Ang 1965). (c) Senior Research Fellow of the Conneil of Scientific and Industrial Research, New Delhi, for providing financial and Industrial Research, New Delhi, for providing financial Research Fellow of the Conneil of Scientific and Industrial Research, New Delhi, for providing financial Research, New Delhi, for providing financial Research, New Delhi, for providing Scientific and Industrial Research, New Delhi, for providing Scientific and Industrial Research, New Delhi, for providing Scientific and Industrial Research, New Delhi, Scientific and Industria Research, New Del

⁽⁴⁾ M. L. Gujral, R. P. Kohli, and P. N. Saxena, J. Assoc. Physicians, 2, 29 (1955).

⁽⁵⁾ M. L. Guiral, P. N. Saxena, and R. P. Kohli, Invian J. Med. Res., 45, 207 (1957).